Math, asked by Durgeshmali4500, 1 year ago

integration sin3x/sinx​

Answers

Answered by kaushik05
48

  \huge \: \mathfrak { \purple{solution}}

TO SOLVE:

 \int \:  \frac{sin3x}{sinx }  dx\\  \\

As we know that

 \boxed{ \green{ \bold{sin3x = 3sinx - 4 {sin}^{3} x}}}

  \leadsto \: \int \:  \frac{3sinx - 4 {sin}^{3} x}{sinx}  dx\\  \\  \leadsto \:  \int \:  \frac{3sinx}{sinx} dx -  \int \frac{4 {sin}^{3}x }{sinx} dx \\  \\  \leadsto \int3dx -  \int4 {sin}^{2} \:  xdx

Now use

  \boxed{ \red{ \bold{{sin}^{2} x =  \frac{1  - cos2x}{2}}  }}

 \leadsto \: 3 \int \: dx - 4 \int \:   \frac{1 - cos2x}{2} dx \\  \\  \leadsto \: 3 \int \: dx -  \frac{4}{2}  \int \: 1 - cos2x \: dx \\  \\  \leadsto \: 3 \int \: dx - 2( \int \: dx -  \int \: cos2x \: dx) \\  \\  \leadsto \: 3x - 2( x -  \frac{sin2x}{2} ) + c \\  \\  \leadsto \: 3x - 2x + sin2x + c

Formula used :

 \boxed{ \blue{\bold{ \int \: dx = x} }}\\  \\  \boxed{ \bold{\blue{ \int \: cos \: a x = \:  \frac{sin \: a x}{a} }}}

Answered by probrainsme102
1

Answer:

Final answer is sin 2x + x + c

Step-by-step explanation:

Integration is process to sum up some parts to finds the whole parts.

Given: The trigonometry equation is sin3x/sinx​

Find: Need to find the integration part of the equation sin3x/sinx​

Solution:

\int\limits^a_b \frac{Sin3x}{Sinx} \, dx \\=Sin2x+\int\limits dx \\= sin 2x + x + c

So,  the final answer is sin 2x + x + c

#SPJ2

Similar questions