Math, asked by swapnasuperbls2087, 10 months ago

Integration sin5 x.cos5 x dx

Answers

Answered by Stera
3

GivEn

To integrate : sin5xcos5x

SoluTion

Let us consider

 \sf \implies \sin5x = t \\  \\   \sf Differentiating \: both \: sides  \: with \: respect \: to \: x\\  \\  \implies \sf \dfrac{d}{dx} ( \sin5x) =  \frac{dt}{dx}  \\  \\  \implies \sf \cos5x \times 5 =  \dfrac{dt}{dx}  \\  \\   \sf\implies 5\cos5x \: dx = dt

Now on integration we have

 \sf \longrightarrow \int \sin5x \cos5x  \: dx \\  \\  \longrightarrow \sf \dfrac{5}{5}  \int\sin5x \cos5x  \: dx \\  \\  \longrightarrow \sf \dfrac{1}{5}  \int 5\sin5x \cos5x \: dx \\  \\  \longrightarrow  \sf\dfrac{1}{5}  \int \sin5x \times5 \cos5x \: dx \\  \\  \longrightarrow  \sf\dfrac{1}{5}\int t \: dt  \\ \\ \longrightarrow \sf \dfrac{1}{5} \{ \dfrac{t^{2}}{2} + C\} \\\\ \sf \longrightarrow \dfrac{\sin^{2}5x}{10} + C

Answered by BrainlyIAS
5

\bold{\int sin5x.cos5x\;dx...(1)}\\\\

Let u = sin5x ... (2)

\implies \bold{du=5.cosxdx }\\\\\implies \bold{\frac{du}{5}=cosx.dx...(3)}

Now sub. (2) & (3) in (1) , we get ,

\implies \bold{\int u.\frac{du}{5}}\\\\\implies \bold{\frac{1}{5}\int u.du}\\\\\implies \bold{\frac{1}{5}.\frac{u^2}{2}+c}\\\\\implies \bold{\frac{sin^2(5x)}{10}+c \;[From\;(2)]}

\bold{\bf{\red{So\;,\;\int sin5x.cos5x.dx=\frac{sin^2(5x)}{10}+c }}}

Similar questions