Math, asked by THEmultipleTHANKER, 2 months ago

Integration:-

{\displaystyle {\int \cfrac{\sec^2x}{\cosec^2x}dx}}

Answers

Answered by Anonymous
6

SOLUTION :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \tt{ \int \dfrac{e^{2x}}{e^{2x}+1} - \frac{2 {e}^{x} }{ {e}^{2x} + 1} \: dx }}\\ \\ \end{gathered}\end{gathered}\end{gathered} \end{gathered} </p><p>

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \tt{ \int \dfrac{e^{2x}}{e^{2x}+1} \: dx - \int\frac{2 {e}^{x} }{ {e}^{2x} + 1} \: dx }}\\ \\ \end{gathered}\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\\ : \implies{ \tt{ \frac{1}{2} \times in \bigg( {e}^{2x} + 1 \bigg) - \int\frac{2 {e}^{x} }{ {e}^{2x} + 1} \: dx }}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \tt{ \frac{1}{2} \times in \bigg( {e}^{2x} + 1 \bigg) - 2 \: arctan \bigg( {e}^{x} \bigg) }}\\ \\ \end{gathered}\end{gathered}\end{gathered} \end{gathered}

Answered by Anonymous
6

Answer:

It is the correct answer.

Step-by-step explanation:

Hope this attachment helps you.

Attachments:
Similar questions