integration x^2/(a+bx)^3 dx
Answers
Answered by
14
Answer:
The Answer Is I = 1/b³ [(a+bx)-a²/(a+bx)-2a log (a+bx)]+C
Step-by-step explanation:
I=∫ x^2.dx/(a+bx)^2
Let a+bx=p or x=(p-a)/b so that dx=(1/b).dp
I=∫{(p-a)/b}^2.(1/b)dp/p^2.
I=∫ (1/b)^3.{ 1-a/p}^2.dp
I=∫ (1/b)^3[1–2a/p+a^2/p^2].dp
I= 1/b^3[ p-2a log p-a^2/p]+C
I=1/b^3[p-a^2/p-2a logp]+C
I=1/b^3 [(a+bx)-a^2/(a+bx)-2a log (a+bx)]+C
Similar questions