Math, asked by rk5354157, 18 days ago

integration x^3-x-2dx/1-x^2

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm \:  \displaystyle\int\rm  \frac{ {x}^{3} - x - 2}{1 -  {x}^{2} } \: dx \\

can be rewritten as

\rm \:   =  \: -   \: \displaystyle\int\rm  \frac{ {x}^{3} - x - 2}{{x}^{2}  - 1} \: dx \\

\rm \:   =  \: -   \: \displaystyle\int\rm  \frac{x( {x}^{2} - 1) - 2}{{x}^{2}  - 1} \: dx \\

\rm \:  =  \:  -  \displaystyle\int\rm x \: dx \:  +  \:  \displaystyle\int\rm  \frac{2}{ {x}^{2}  - 1} \: dx

We know,

\boxed{ \rm{ \: \displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \:  \: }} \\

and

\boxed{ \rm{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  -  {a}^{2} } =  \frac{1}{2a}log\bigg |\dfrac{x - a}{x + a} \bigg|  + c \: }} \\

So, using these results, we get

\rm \:  =  \:  - \dfrac{ {x}^{2} }{2} +  2 \times \dfrac{1}{2}log\bigg |\dfrac{x - 1}{x + 1} \bigg|  + c  \\

\rm \:  =  \:  - \dfrac{ {x}^{2} }{2} + log\bigg |\dfrac{x - 1}{x + 1} \bigg|  + c  \\

Hence,

\boxed{ \rm{ \:\rm \:   \displaystyle\int\rm  \frac{ {x}^{3}  - x - 2}{1 -  {x}^{2} }dx=  \:  - \dfrac{ {x}^{2} }{2} + log\bigg |\dfrac{x - 1}{x + 1} \bigg|  + c  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | + c  }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } = log |x +  \sqrt{ {x}^{2} +  {a}^{2}} | + c}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions