Math, asked by adarsh2497, 1 year ago

integration x/a+x dx​

Answers

Answered by Swarup1998
7
\underline{\textsf{Solution :}}

\mathsf{Now,\:\int \frac{x\:dx}{a+x}}

\mathsf{=\int \frac{\{(a+x)-a\}dx}{a+x}}

\mathsf{=\int dx-a\int \frac{dx}{a+x}}

\mathsf{=x-a\:log|a+x|+C}

\textsf{where C is integral constant}

\to \boxed{\mathsf{\int \frac{x\:dx}{a+x}=x-a\:log|a+x|+C}}

\underline{\textsf{Integration formulas :}}

\mathsf{1.\:\int x^{n}dx=\frac{x^{n+1}}{n+1}+C}

\textsf{where C is integral constant}

\mathsf{2.\:\int sinmx\:dx=-\frac{cosmx}{m}+C}

\textsf{where C is integral constant}

\mathsf{3.\:\int cosmx\:dx=\frac{sinmx}{m}+C}

\textsf{where C is integral constant}

\mathsf{4.\:\int e^{mx}dx=\frac{e^{mx}}{m}+C}

\textsf{where C is integral constant}

\mathsf{5.\:\int \frac{dx}{x+a}=log|x+a|+C}

\textsf{where C is integral constant}

Anonymous: Your content and explaination is awesome
Anonymous: Keep it up Brother
Anonymous: Together we go far :)
Swarup1998: :)
Answered by manissaha129
0

Answer:

 →\int  \frac{x}{(x + a)} dx \\  =  \int \frac{(x + a) - a}{(x + a)} dx \\  =  \int \frac{(x + a)}{(x + a)} dx -  \int \frac{a}{(x + a)} dx \\  =  \int dx - a \int \frac{dx}{(x + a)}  \\  = x - a \:  log|x + a| +C\\  = x - { log( |x + a| ) }^{a}  + C

  • x-log(|x+a|)^a+C is the right answer.
Similar questions