Math, asked by atulkumarshukla905, 11 months ago

integration X square + 1 X square + 2 upon X square + 3 X square + 4 DX ​

Answers

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
5

Answer:

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

x + 2tan^-1(x/√3)/√3 – 6tan^-1(x/2)/2 + C

Step-by-step explanation:

Integrate (x²+1)(x²+2) / (x²+3)(x²+4)

F(x) = (x²+1)(x²+2) / (x²+3)(x²+4)

Simplify F(x) first.

F(x) = (x²+3 - 2)(x²+4 – 2) / (x²+3)(x²+4)

= ((x² + 3)( x² + 4) -2(x² + 4) -2(x² + 3) + 4) / ((x² + 3) (x² + 4)

= 1 – 2/( x² + 3) -2/( x² + 4) + 4/(( x² +3)( x² + 4))

= 1 – 2/( x² + 3) -2/(x² + 4) + 4 (1/( x² +3) – 1/( x² + 4))

= 1 + 2/( x² + 3) – 6/(x² + 4)

F(x) = 1 + 2/( x² + 3) – 6/(x² + 4)

Integrating F(x), we get

= ∫(1) dx + 2 ∫(1/( x² + (√3)²)) dx - 6∫(1/( x² + 2²)) dx  

= x + 2tan^-1(x/√3)/√3 – 6tan^-1(x/2)/2 + C

Where C is a constant.  

Attachments:
Similar questions