Integration x.tanx.sec^2x
Answers
Answered by
1
∫tanxsec2xdx
Let u=cosx
1
u(1−2
u
2
)
⟹A(1−2
u
2
)+u(Bu+C)
⟹(−2A+B)
u
2
+Cu+A
Comparing coefficients...
A=1,
−2A+B
B
=∫
sinx
cosx
⋅
1
2
cos
2
x−1
dx
⟹du=−sinxdx
=∫
−du
u(2
u
2
−1)
=∫
du
u(1−2
u
2
)
=
A
u
+
Bu+C
1−2
u
2
=1
=1
C=0
=0
=2A=2
=∫
1
u
+
2u
1−2
u
2
du
=ln|u|−
1
2
ln|1−2
u
2
|+C
=
ln|cosx|−
1
2
ln|1−2
cos
2
x|+C
yelletipraneeth16:
or open this link https://www.quora.com/What-is-the-integral-of-tan-x-sec-2x
Similar questions