Math, asked by zameerrehan12, 3 months ago

integration x(x+1)^-1​

Answers

Answered by Mister36O
2

Answer:

\quad \dashrightarrow \:  \: \bf\frac{x^{3}}{3}+\frac{x^{2}}{2}+С  \\

Step-by-step Explanation :

\quad \maltese \:  \:\displaystyle \bf\int{ x(x+1)  ^ { 1  }    }d x   \\

\quad \dashrightarrow \:  \:    \tt\int x\left(x+1\right)\mathrm{d}x \\

\quad \dashrightarrow \:  \:  \tt\int x^{2}+x\mathrm{d}x   \\

\quad \dashrightarrow \:  \: \tt \int x^{2}\mathrm{d}x+\int x\mathrm{d}x   \\

\quad \dashrightarrow \:   \:  \tt   \frac{x^{3}}{3}+\int x\mathrm{d}x \\

\quad \dashrightarrow \:  \: \tt  \frac{x^{3}}{3}+\frac{x^{2}}{2}  \\

\quad \dashrightarrow \:  \: \bf \frac{x^{3}}{3}+\frac{x^{2}}{2}+С \:  \:  \bigstar  \\

Method Used :

  • Calculate x+1 to the power of 1 and get x+1.

  • Use the distributive property to multiply x by x+1.

  • Integrate the sum term by term.

  • Since int x^{k} dx = {x^{k+1}}/{k+1} for k ≠ -1, replace int x^{2} dx with {x^{3}}/{3}.

  • Since int x^{k} dx = {x^{k+1}}/{k+1} for k ≠ -1, replace int x dx with {x^{2}}/{2}.

  • If F (x) is an antiderivative of f (x), then the set of all antiderivatives of f (x) is given by F (x)+C. Therefore, add the constant of integration C € R to the result.
Similar questions