Computer Science, asked by nikitagwaghmare06, 3 months ago

integration √x(x^2-5x+3)dx​

Answers

Answered by aryanb793
2

Explanation:

please refer to the attachment

hope it may help

Attachments:
Answered by VishnuPriya2801
4

Answer:-

We have to evaluate:

∫ √x(x² - 5x + 3) dx

using  \sf \sqrt[n]{x} = x^{\frac{1}{n}} we get,

 \implies \sf \int \:  {x}^{ \frac{1}{2} } ( {x}^{2}  - 5x + 3) \:  \: dx

using aᵐ × aⁿ = aᵐ we get,

 \implies \int \sf \:(  {x}^{ \frac{1}{2} + 2 }  - 5 \times  {x}^{ \frac{1}{2}  + 1}  + 3 \times  {x}^{ \frac{1}{2} } ) \:  \: dx \\  \\  \\ \implies \int \sf \: ( {x}^{ \frac{1 + 4}{2}} - 5 \times  {x}^{ \frac{1 + 2}{2}} + 3 \times  {x}^{ \frac{1}{2} } ) \:  \: dx \\  \\  \\ \implies \int \sf \: ({x}^{ \frac{5}{2} }  - 5 {x}^{ \frac{3}{2} }  + 3 {x}^{ \frac{1}{2} } ) \:  \: dx

using (u ± v) dx = u dx ± v dx we get,

 \: \implies \int \sf   {x}^{ \frac{5}{2} }  \: dx - \int \: 5 {x}^{ \frac{3}{2} }   \: dx+  \int \: 3 {x}^{ \frac{1}{2} }  \: dx  \\

using ∫ xⁿ dx = (xⁿ⁺¹ / n + 1) + c we get,

 \: \implies \sf \:   \frac{ {x}^{ \frac{5}{2}  + 1} }{ \frac{5}{2} + 1 }   -  5 \times  \bigg( \frac{ {x}^{ \frac{3}{2}  + 1} }{ \frac{3}{2}  + 1}  \bigg) + 3 \times  \bigg( \frac{ {x}^{ \frac{1}{2}  + 1} }{ \frac{1}{2} + 1 }  \bigg) + c \\  \\  \\ \implies \sf \:   \frac{ {x}^{ \frac{5 + 2}{2} } }{ \frac{5 + 2}{2} }  - 5 \times   \frac{ {x}^{ \frac{3 + 2}{2} } }{ \frac{3 + 2}{2} }  + 3 \times  \frac{ {x}^{ \frac{1 + 2}{2} } }{ \frac{1 + 2}{2}  }  + c \\  \\  \\ \implies \sf \:   \frac{ {x}^{ \frac{7}{2} } }{ \frac{7}{2} }  - 5 \times  \frac{ {x}^{ \frac{5}{2} } }{ \frac{5}{2} }  + 3 \times  \frac{ {x}^{ \frac{3}{2} } }{ \frac{3}{2} }  + c \\  \\  \\ \implies \sf \:   \frac{2 {x}^{ \frac{7}{2} }}{7}   - 5 \times  \frac{2}{5}  \times  {x}^{ \frac{5}{2} }  + 3 \times  \frac{2}{3}  \times  {x}^{ \frac{3}{2} }  + c \\  \\  \\ \implies  \underline{ \underline{\sf \: \frac{2}{7}  {x}^{ \frac{7}{2} }  - 2 {x}^{ \frac{5}{2} }  + 2 {x}^{ \frac{3}{2} }  + c}}


Anonymous: Supercalifragilisticexpialidocious!
VishnuPriya2801: Thanks !!!
Similar questions