Math, asked by AKANKSHABIJLWAN9533, 18 days ago

Integration = x³ tan⁴ x⁴ sec² x⁴

Answers

Answered by vikkiain
0

Answer:

\frac{tan^{5} {x}^{4}  }{15}  + c

Step-by-step explanation:

 \int {x}^{3} tan^{4}  {x}^{4}sec^{2} {x}^{4} dx \\ let \:  \: y =  {x}^{4}  \\ dy = 4 {x}^{3} dx \\  \frac{dy}{3}  =  {x}^{3} dx \\ now \:  \:  \:  \frac{1}{3}  \int \: tan^{4} y \: sec^{2}ydx \\ again \:  \: let \:  \: z =  tany \\ dz = sec^{2} ydy \\ now \:  \:  \:  \:   \frac{1}{3} \int \:  {z}^{4} dz  =  \frac{1}{3}  \times  \frac{ {z}^{5} }{5}  =  \frac{ {z}^{5} }{15}  + c \\  \frac{tan^{5}y }{15}  + c  =  \frac{tan^{5} {x}^{4}  }{15}  + c

Similar questions