Math, asked by adhiraj40, 11 months ago

integrationsin³x.dx result​

Answers

Answered by Anonymous
60

Answer:

\sf \int{sin^3x}dx

here use sin3x formula ,

\sf sin \: 3x =  3sinx \:  - 4 {sin}^{3}x

\sf sin 3x - 3sinx = -4sin^3x

\sf sin^3x =(\frac{sin3x - 3sinx}{-4})

take a (-) on numerator and denominator side of RHS

\sf sin^3x = (\frac{-sin3x + 3sinx}{4})

\sf sin^3x = (\frac{3sinx - sin3x}{4}) ---------(1)

\sf \int{sin^3x}dx

put the value of sin³x from equation (1)

\sf = \int ({\frac{3sinx - sin3x}{4}})dx

\sf = \int {\frac{3sinx}{4}}dx - \int{\frac{sin3x}{4}}dx

\sf = \frac{3}{4}\int{sinx}dx-\frac{1}{4} \int{sin3x}dx

\sf=\frac{3}{4}(-cosx)-\frac{1}{4}(\frac{-cos3x}{3})+c

\sf =(\frac{-3cosx}{4})-(-(\frac{cos3x}{12}))+c

\sf =(-\frac{3cosx}{4})+(\frac{cos3x}{12})+c

\sf =(\frac{cos3x}{12}) -(\frac{3cosx}{4} )+ c

\boxed {\sf I = \frac{1}{12}cos3x - \frac{3}{4}cosx + c}

Answered by Anonymous
19

Note: Check this attachment..!

So:

\boxed{\sf{\int sin^{3}xdx\:=\:-cos\:x+\frac{1}{3}\:cos^{3}x+C}}

Attachments:
Similar questions