Math, asked by nazmusmondal9093, 6 months ago

Interation of 0 to pai/2 root cos x

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int _{0 }^{ \frac{\pi}{2} }  \sqrt{ \cos(x) } dx \\

 =   \int _{0} ^{ \frac{\pi}{2} } \frac{ \cos(x) }{ \sqrt{ \cos(x) } }dx \\

 =   \int _{0} ^{ \frac{\pi}{2} } \frac{ \cos(x) }{ \sqrt{1 -  \sin ^{2} (x) } } dx \\

let \:  \:  \sin(x)  = t \\  =  >  \cos(x) dx = dt

 =  \int _{0} ^{ 1 } \frac{dt}{ \sqrt{1 -  {t}^{2} } }  \\

 = [ \sin^{ - 1} (t) ] _{0}^{1}  \\

 = [ \sin^{ - 1} (  \sin(x) ) ] _{0}^{1}  \\

  = [ x] _{0}^{1}  \\

 = 1

Similar questions