Math, asked by vipulsoni78788, 1 month ago

intereration of √x+1/√x​

Answers

Answered by VishnuPriya2801
8

Answer:-

We have to find:

 \displaystyle \int \sf \bigg(\sqrt{x}  +  \dfrac{1}{ \sqrt{x} }\bigg) \:  \:  x

using (u ± v) dx = u dx + v dx we get,

 \implies \displaystyle \int \sf  \sqrt{x} \:  \:  dx + \displaystyle \int \sf \frac{1}{ \sqrt{x} }  \:  \: dx

using n√x = x^(1/n) & 1/a = a⁻¹ we get,

 \implies \displaystyle \int \sf \:  {x}^{ \frac{1}{2} } \:  \:  dx + \displaystyle \int \sf \:  {x}^{ \frac{ - 1}{2} } \:  \:  dx

using xⁿ dx = (xⁿ¹) / n + 1 we get,

 \implies \sf \:  \frac{ {x}^{ \frac{1}{2} + 1 } }{ \frac{1}{2} + 1 }  +  \frac{ {x}^{ \frac{ - 1}{2}  + 1} }{ \frac{ - 1}{2} + 1 }  + c \\  \\  \\ \implies \sf \: \frac{ {x}^{ \frac{1 + 2}{2} } }{ \frac{1 + 2}{2} }  +  \frac{ {x}^{ \frac{1}{2} } }{ \frac{1}{2} }  + c \\  \\  \\ \implies \sf \: {x}^{ \frac{3}{2} }  \times  \frac{2}{3}  +  {x}^{ \frac{1}{2} }  \times 2 + c  \:  \:  \:  \:  \:  \: ( \because  {x}^{ \frac{a}{b}}  =  \sqrt[b]{ {x}^{a} } \: ) \\  \\  \\ \implies  \underline{ \underline{\sf \:  \frac{2\sqrt{ {x}^{3} }  }{3}  + 2 \sqrt{x}  + c}}

___________________________

Integrals of some functions:-

  • ∫ sin x dx = - cos x + c

  • ∫ cos x dx = sin x + c

  • ∫ tan x dx = log (sec x) + c

  • ∫ a dx = ax + c (where a is constant)

  • ∫ sin ax = (- cos ax)/a + c

  • ∫ cos ax = (sin ax)/a + c
Similar questions