Math, asked by rushyendar, 3 months ago

intergral of 1/(sinx+cosx)​

Answers

Answered by BrainlyIAS
18

Question :

\bullet\ \; \displaystyle \sf \red{\int \dfrac{1}{sin\ x+cos\ x}\ dx}

Solution :

\displaystyle \sf \int \dfrac{1}{sin\ x+cos\ x} \; dx

We know that ,

\bullet\ \; \sf \pink{sin\ x=\dfrac{2\ tan\ \frac{x}{2}}{1+tan^2 \frac{x}{2}}}

\bullet\ \; \sf \green{cos\ x=\dfrac{1-tan^2 \frac{x}{2}}{1+tan^2 \frac{x}{2}}}

\\ \to \displaystyle \sf \int \dfrac{1}{ \dfrac{2\ tan\ \frac{x}{2}}{1+tan^2 \frac{x}{2}} +\dfrac{1-tan^2 \frac{x}{2}}{1+tan^2 \frac{x}{2}}} \; dx \\

\\ \to \displaystyle \sf \int \dfrac{1+tan^2 \frac{x}{2}}{2\ tan\ \frac{x}{2}+1-tan^2 \frac{x}{2}}\ dx \\

\bullet\ \; \purple{\sf sec^2 \theta =1+tan^2 \theta }

\\ \to \displaystyle \sf \int \dfrac{sec^2 \frac{x}{2} }{2\ tan\ \frac{x}{2}+1-tan^2 \frac{x}{2}}\ dx \\

\\ \to \displaystyle \sf \int \dfrac{sec^2 \frac{x}{2} }{2\ tan\ \frac{x}{2}+2-1-tan^2 \frac{x}{2}}\ dx \\

\\ \to \displaystyle \sf \int \dfrac{sec^2 \frac{x}{2} }{2-(tan^2 \frac{x}{2}+1+2\ tan\ \frac{x}{2})}\ dx \\

\\ \to \displaystyle \sf \int \dfrac{sec^2 \frac{x}{2} }{(\sqrt{2})^2-\left(tan\ \frac{x}{2}+1 \right)^2}\ dx \\

Let's use substitution method ,

\sf u=tan\ \frac{x}{2}+1

\sf du=\frac{1}{2}\ sec^2\frac{x}{2}\ dx

\sf 2\ du=sec^2 \frac{x}{2}\ dx

\\ \to \displaystyle \sf \int \dfrac{2\ du }{(\sqrt{2})^2-(u)^2} \\

\\ \to \displaystyle \sf 2\ \int \dfrac{ du }{(\sqrt{2})^2-(u)^2} \\

\bullet\ \; \displaystyle \sf \orange{\int \dfrac{dx}{a^2-x^2}=\dfrac{1}{2a}\ \ln \bigg| \dfrac{a+x}{a-x} \bigg| }

\to \sf 2\ \dfrac{1}{2 \sqrt{2}}\ \ln \bigg| \dfrac{\sqrt{2}+u}{\sqrt{2}-u} \bigg| + c

\to \sf  \blue{ \dfrac{1}{ \sqrt{2}}\ \ln \bigg| \dfrac{\sqrt{2}+ tan\ \frac{x}{2}-1}{\sqrt{2}-tan\ \frac{x}{2}-1} \bigg| +c}\ \; \bigstar

★ ═════════════════════ ★

Answered by HeartCrusher
24

The Requested Answer Of The

Question Is In Attachment

Attachments:
Similar questions