intergrate ∫2x(√x ²+3)dx
Answers
Answered by
2
Step-by-step explanation:
2xx2−1dx=ln(x2−1)+C. Explanation: ∫2xx2−1dx=? x2−1=u. 2xdx=du. ∫2xx2 −1dx=∫duu=lnu+C. ∫2xx2−1dx=ln(x2−1)+C.
∫2xx2−1dx=ln(x2−1)+C Explanation: ∫2xx2−1dx=? x2−1=u 2xdx=du ∫2xx2−1dx=∫duu=lnu+C ∫2xx2−1dx=ln(x2−1)+C
Similar questions