Math, asked by prathamshetty874, 1 month ago

intergrate
dx divided by
 e {}^{x \: }   \:  + e {}^{ - x}  \:

Attachments:

Answers

Answered by mathdude500
9

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \boxed{ \red{ \bf \: \tt \: \int \dfrac{dx}{ {x}^{2} + 1 }  =  {tan}^{ - 1} x + c}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Concept used :-

  • Method of Substitution

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \:Let \: I \:  =  \int \dfrac{dx}{ {e}^{x} +  {e}^{ - x}  }

 = \tt \: \int \dfrac{dx}{{e}^{x} + \dfrac{1}{{e}^{x}} }

 = \tt \: \int \dfrac{{e}^{x}}{{e}^{2x} + 1}

\tt \:  Put \: {e}^{x} \:  =  \: t  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt\implies \:\dfrac{d}{dx} {e}^{x} = \dfrac{dt}{dx}  \\ \tt\implies \:{e}^{x} = \dfrac{dt}{dx}   \:  \:  \:  \:  \: \\ \bf\implies \:{e}^{x}dx = dt

\tt \: So, \: I \:  = \tt \: \int \dfrac{dt}{ {t}^{2}  + 1}

\bf\implies \:I =  {tan}^{ - 1} t \:  +  \: c

\bf\implies \:I =  {tan}^{ - 1} ({e}^{x}) \:  +  \: c

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by shadowsabers03
10

Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{e^x+e^{-x}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{e^x+\dfrac{1}{e^x}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\left(\dfrac{e^{2x}+1}{e^x}\right)}

\displaystyle\longrightarrow I=\int\dfrac{e^x}{e^{2x}+1}\ dx

\displaystyle\longrightarrow I=\int\dfrac{e^x\ dx}{1+\left(e^x\right)^2}\quad\quad\dots(1)

Put,

\longrightarrow u=e^x

\longrightarrow du=e^x\ dx

Then (1) becomes,

\displaystyle\longrightarrow I=\int\dfrac{du}{1+u^2}

\displaystyle\longrightarrow I=\tan^{-1}u+C

\displaystyle\longrightarrow\underline{\underline{I=\tan^{-1}\left(e^x\right)+C}}

Similar questions