Math, asked by Anonymous, 4 months ago

Intergrate
 \to \bf \int \dfrac{dx}{sin {}^{2} xcos^{2}x }  \\
Option are
A) tanx - cotx + k
B) tanx + cotx + k
C) - tanx + cotx + k
D) - tanx - cotx + k ​

Answers

Answered by Asterinn
97

 \rm \longrightarrow \displaystyle  \int  \rm\dfrac{dx}{sin {}^{2} x \: cos^{2}x }

\rm \longrightarrow \displaystyle  \int  \rm\dfrac{1}{sin {}^{2} x \: cos^{2}x } \: dx

We know that :-

  \boxed{ \rm \large {sin}^{2}  \theta  +  {cos}^{2}  \theta= 1}

\rm \longrightarrow \displaystyle  \int  \rm\dfrac{{sin}^{2}  x +  {cos}^{2} x}{sin {}^{2} x \: cos^{2}x } \: dx

\rm \longrightarrow \displaystyle  \int   \bigg(\rm\dfrac{{sin}^{2}  x }{sin {}^{2} x \: cos^{2}x }  +  \frac{{cos}^{2} x}{sin {}^{2} x \: cos^{2}x} \bigg) dx

\rm \longrightarrow \displaystyle  \int   \bigg(\rm\dfrac{ 1}{  cos^{2}x }  +  \frac{1}{ \: sin^{2}x} \bigg) dx

\rm \longrightarrow \displaystyle  \int   \bigg(  \rm \: {sec}^{2}x +   {cosec}^{2} x \bigg) dx

\rm \longrightarrow \displaystyle  \int    \rm \: {sec}^{2}x \: dx + \int   {cosec}^{2} x \:   dx

\rm \longrightarrow \displaystyle      \rm tan \: x - cot \: x + k

Therefore, option A) tanx - cotx + k is correct


BrainlyIAS: Awesome ♥ ❤
Asterinn: Thank you! :D
Answered by Anonymous
59

Question:-

\to\bf\int \dfrac{dx}{ \sin^{2}x \:  { \cos }^{2}x}

Given Options:-

  • A) tanx - cotx + k
  • B) tanx + cotx + k
  • C) - tanx + cotx + k
  • D) - tanx - cotx + k

Solution:-

  • Option A) tanx - cotx + k

Explanation:-

\to \: \bf\int \frac{dx}{ {sin}^{2}x \:  {cos}^{2} x}

 \to\bf \int \dfrac{1}{ {sin}^{2}x \:  {cos}^{2}x}dx

\sf\green{as \: we \: know \: that : } \\

\rm\large {sin}^{2}\theta +  {cos}^{2}\theta = 1

So,

\implies \: \bf\int \:  \dfrac{ {sin}^{2}x \:  +  {cos}^{2}x }{ {sin}^{2}x \:  {cos}^{2}x } dx \\

\implies \: \bf\int( \dfrac{ {sin}^{2}x}{ {sin}^{2}x \:  {cos}^{2}x} +  \dfrac{ {cos}^{2}x }{ {sin}^{2}x \:  {cos}^{2}x } dx) \\

\implies \: \bf\int( \dfrac{1}{ {cos}^{2}x}  +  \dfrac{1}{ {sin}^{2}x} )dx \\

\implies \: \bf\int \:  ({sec}^{2}  +  {cosec}^{2}x) \: dx \\

\implies \: \bf\int \:  {sec}^{2}x \: dx +  \: \int {cosec}^{2}dx \\

\implies \: \bf \: tan \: x - cot \: x + k

Hence, Option A is correct :)


BrainlyIAS: From last , see 4th line again ( Kindly edit that to sec^2x ) ❤
Similar questions