English, asked by ms521387, 7 months ago

intergrate the following x^4 sin ( x^5 + 6 ) dx is equal to​

Answers

Answered by Anonymous
2

Given ,

The function is

  •  \tt f(x) =  {x}^{4} sin( {x}^{5}  + 6)

Let ,

 \tt {x}^{5}  + 6 = t

Differentiaitng t wrt x , we get

 \tt  \implies 5 {x}^{4}  =  \frac{dt}{dx}

 \tt  \implies dx =  \frac{dt}{5 {x}^{4} }

Thus ,

  \tt  \implies \int{ {x}^{4} sin( {x}^{5}  + 6)} \:  \: dx

\tt  \implies \int{ {x}^{4} sin(t)} \:  \:  \frac{dt}{5 {x}^{4} }

\tt  \implies \int{   \frac{sin(t)}{5} } \:  \:   dt

\tt  \implies \frac{1}{5}  \int{   sin(t)} \:  \:   dt

\tt  \implies -  \frac{1}{5}   \times cos(t) +  C

\tt  \implies -  \frac{1}{5}   \times cos( {x}^{5}  + 6)+ C

__________________ Keep Smiling

Similar questions