Math, asked by Anonymous, 3 months ago

Intergration of
 \bf \int( {x}^{2}  {e}^{ {x}^{5} } )dx \\

Answers

Answered by assingh
45

Topic :-

Calculus - II

To Solve :-

\displaystyle \int x^2e^{x^{5}}dx

Solution :-

\displaystyle \int x^2e^{x^{5}}dx

Substitute,\:u=x^3

Differentiating\:\:both\:\:sides,

du=3x^2dx

dx=\dfrac{1}{3x^2}du

Now, we can write it as,

\dfrac{1}{3}\displaystyle \int e^{u^{5/3}}du

This is a special integral (incomplete gamma function)

So, it becomes,

\dfrac{\Gamma \left ( \dfrac{3}{5},-u^{5/3} \right )}{5}

Put back the values of 'u'.

\dfrac{\Gamma \left ( \dfrac{3}{5},-x^{5} \right )}{5}

Answer :-

\dfrac{\Gamma \left ( \dfrac{3}{5},-x^{5} \right )}{5}+C

Extra Information :-

Incomplete Gamma Function

The upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

\Gamma(z,x)=x^ze^{-x}\displaystyle \sum_{n=0}^{\infty}\dfrac{L_n^{(z)}(x)}{n+1},

which converges for R(z) > -1 and x > 0.

Answered by diajain01
40

\huge{\fbox{\fcolorbox{cyan}{pink}{✿AnsWer}}}

:  \longmapsto \:  {\boxed {\red{ \frac{1}{2}  {x}^{4}  {e}^{ {x}^{2} }  -  {x}^{2}  {e}^{ {x}^{2} }  +  {e}^{ {x}^{2} }  + c}}}

◑ TO FIND:-

Integration of ---

 \int \frac{1}{2}  {x}^{4}  {e}^{ {x}^{2} } dx

______________________________________________

EXPLANATION:-

:  \longrightarrow \:  \int {x}^{5} . {e}^{ {x}^{2} } dx

:  \longrightarrow \:  \frac{1}{2}  \int {x}^{4}  {e}^{ {x}^{2} }. \: 2xdx

Integration by substitution:-

:  \longrightarrow  \:  {x}^{2}  = u

:  \longrightarrow  \: d( {x}^{2} ) = du

:  \longrightarrow  \frac{1}{2}  \int {x}^{4}  {e}^{ {x}^{2} } d {x}^{2}

:  \longrightarrow  \frac{1}{2}  \int {u}^{2}  {e}^{u} du

Integration by parts:-

:  \longrightarrow  \boxed{ \frac{1}{2} \int {u}^{2} d( {e}^{u})}

:  \longrightarrow  \frac{1}{2} ( {u}^{2} {e}^{u}   -  \int2u {e}^{u} du

Using Integration by parts again:-

:  \longrightarrow  \frac{1}{2}( {u}^{2}   {e}^{u}  - 2 \int \: ud( {e}^{u} ) )

:  \longrightarrow  \frac{1}{2} ( {u}^{2}  {e}^{u}  - 2u {e}^{u}  - ( - 2 \int {e}^{u} du))

:  \longrightarrow  \frac{1}{2}  {u}^{2}  {e}^{u}  - u {e}^{u}  +  {e}^{u}  + c

Reverse The substitution:-

:  \longmapsto \:  {\boxed {\purple{ \frac{1}{2}  {x}^{4}  {e}^{ {x}^{2} }  -  {x}^{2}  {e}^{ {x}^{2} }  +  {e}^{ {x}^{2} }  + c}}}

HOPE IT HELPS

Similar questions