Math, asked by vpgpondy, 11 months ago

internal and external diameters of a hollow hemisphere are 8cm and 10cm respectively what its TSA​

Answers

Answered by ButterFliee
2

\huge\underline\mathbb\red{GIVEN:-}

  • Internal diameter of hollow hemisphere = 8 cm
  • External diameter of hollow hemisphere = 10 cm

\huge\underline\mathbb\red{TO\:FIND:-}

Find the T.S.A. of hemisphere = ?

\huge\underline\mathbb\red{SOLUTION:-}

We have given that the internal diameter of hemisphere = 8 cm

\rm{Internal\: Radius =\frac{Internal \:diameter}{2}= \frac{8}{2}}

\large\rm\blue{Internal\:Radius= 4\: cm}

The external diamtere of hemisphere = 10 cm

\rm{External\: radius =\frac{External\:Diameter}{2}=\frac {10}{2}}

\large\rm\blue{External \:Radius= 5\: cm}

Let the internal radius of hemisphere be (r)

and,

external radius of hemisphere be (R)

To find the T.S.A. of hemisphere, we use the formula:-\bf{ 2π{r}^{2} + 2π{R}^{2} + π({R}^{2} -{ r}^{2}) }

\implies\bf{2π({r}^{2} + {R}^{2}) + π({R}^{2} - {r}^{2})}

\implies\bf{2π[{(4)}^{2}+ {(5)}^{2}] + π[{(5)}^{2} - {(4)}^{2}]}

\implies\bf{2π(16+25) +π(25-16)}

\implies \bf{2π(41) +π(9)}

\implies \bf{2 \times\frac {22}{7} \times41 + \frac{22}{7} \times 9}

\implies \bf{\frac{22}{7}\times(2 \times 41 + 9)}

\implies \bf{\frac{22}{7} \times(82 + 9)}

\implies \bf{\frac{22}{7}\times91}

\implies \bf{ 22 \times13}

\implies \bf{286 \:{cm}^{2}}

\large\underline\mathbb\red{FINAL\:ANSWER:-}

\huge{\boxed{\boxed{\bf{\blue{T.S.A. = 286\:{cm}^{2}}}}}}

Thus, the T.S.A. of hemisphere is 286 cm²

Answered by silentlover45
1

Answer:

\implies The T.S.A of hemisphere is 286cm².

\large\underline\mathrm{Given:-}

  • Internal diameter of hollow hemisphere = 8cm
  • External diameter of a hollow hemisphere = 10cm

\large\underline\mathrm{To \: find}

  • The T.S.A of hemisphere = ?

\large\underline\mathrm{Solution}

\implies Internal Radius = (Internal Diameter)/2 = 8/2

\implies Internal Radius = 4cm

\implies External Radius = External Diameter = 10/2

\implies External Radius = 5

  • Let the internal radius of hemisphere be (r) and external radius of hemisphere be (R).

\implies 2πr² + 2πr² + π(R² - r²)

\implies 2π(r² + R²) + π(R² - r²)

\implies 2π(4² + 5²) + π(5² - 4²)

\implies 2π(16 + 15) + π(25 - 16)

\implies 2π(41) + π(9)

\implies 2 × 22/7 × 41 + 22/7 × 9

\implies 22/7 × (82 + 9)

\implies 22/7 × 91

\implies 22 × 13

\implies 286cm²

Thus,

The T.S.A of hemisphere is 286cm².

Similar questions