internal energy for adiabatic expansion for an ideal gas is x. then find change in internal energy if same process is carried out isothermally
Answers
Answer:
Good keep it up for the new things in world mark me in botanist the new things in world mark
Answer:
When an ideal gas is compressed adiabatically \left(Q=0\right), work is done on it and its temperature increases; in an adiabatic expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark. Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.