Math, asked by lavkushkushwaha123, 9 months ago

internal radius of hemisphere bowl is 21cm ,find the volume of the bowl?

Answers

Answered by Anonymous
5

GIVEN:-

  • \rm{Radius\:of\:hemisphere\:bowl= 21cm}

TO FIND:-

  • The Volume of the bowl.

FORMULAE USED:-

  • {\dag{\boxed{\rm{Area\:of\:hemisphere= \dfrac{2}{3}\pi r^3}}}}

Now,

\implies\rm{Area\:of\:hemisphere=\dfrac{2}{3}\pi r^3}

\implies\rm{Area\:of\:hemisphere=\dfrac{2}{3}\times{\dfrac{22}{7}\times{(21)^3}}}

\implies\rm{Area\:of\:hemisphere=\dfrac{2}{\cancel{3}}\times{\dfrac{22}{\cancel{7}}\times{\cancel{21}}\times{\cancel{21}}\times{21}}}

\implies\rm{Area\:of\:hemisphere=2\times{22}\times{7}\times{3}\times{21}=19404cm^3}

Hence, The Volume of the ball is 19404cm³

MORE FORMULAES

\boxed{\begin{minipage}{5cm}\\ \\   \sf\bf{Volume\:of\:cylinder= $ \tt \pi r^2h $}\\ \\  \tt\bf{T.S.A\:of\:Cylinder=$ \tt 2\pi r(r+h) $}\\ \\ \rm\bf{LSA of Cylinder= $ \tt 2\pi rh $}\end{minipage}}

Answered by Anonymous
2

Given ,

The radius of sphere = 21 cm

We know that ,

The volume of sphere is given by

Volume = 2/3 × π(r)³

Thus ,

\sf \mapsto Volume =  \frac{2}{3}  \times  \frac{22}{7}  \times  {(21)}^{3} \\  \\\sf \mapsto  Volume =  44 \times7  \times 3 \times 21  \\  \\ \sf \mapsto Volume = 924 \times 21 \\  \\ \sf \mapsto Volume =19404 \:  \:  {cm}^{3}

 \sf \therefore \underline{ {The \:  volume  \: of  \: bowl \:  is  \: 19404 \:  {cm}^{3} }}

Similar questions