Math, asked by gaikhang, 3 months ago

.
Intersecting the y-axis at a distance of 2 units above the origin and making an
angle of 30° with positive direction of the x-axis.​

Answers

Answered by honey0211
0

Step-by-step explanation:

if two lines intersect at point ( a,b) it means point ( a,b) satisfy equation of both straight lines. So you can put one by one in both equation to get value of c ( intercept)

line intersect at ( 0, 2) i.e point ( 0, 2 ) satisfy the equation y=mx+c

2=m*0 + c

c=2

slope(m) = tan 30° = 1/√3

putting value of m and c in equation of straight line

y=1x/√3 + 2

√3y=x +2√3

x - 3y +2√3=0

Answered by mathdude500
2

Given Question :-

  • Find the equation of line which intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

─━─━─━─━─━─━─━─━─━─━─━─━─

Understanding the concept used :-

In this question, we use the slope intercept form to find the equation of line as we have provided the intercept on y axis as well slope ( can be evaluated using tanθ).

─━─━─━─━─━─━─━─━─━─━─━─━─

Formula Used

☆ Slope-Intercept Form of the Equation of a Line :-

☆ The linear equation written in the form :- y = m x + c. where:

  • m is the slope
  • c is the y-intercept.

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution :-

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{intercept \: on \: y \: axis \:  = 2 \: units} \\ &\sf{angle \:which \:  line \: makes \: with \:  + ve \: x \: axis \:  = 30°} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼Since  \: line \:  makes \:  an \:  angle \:  of  \: 30° \:  with  \:  \\ \tt \:  positive \:  direction  \: of \:  x \:  -  \: axis.

\tt\implies \: \: Slope  \: of \: line,  \:m \:  = tan30° \:  = \dfrac{1}{ \sqrt{3} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼Also, \:  line \:  intersects  \: the \:  y - axis  \: at a  \:  \\ \tt \:  distance  \: of  \: 2  \: units \:  above \:  the \:  origin.

\tt\implies \:intercept \: on \: y \:  -  \: axis,  \: c \:  = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ \blue{So,  \: equation  \: of \:  line  \: is  \: given \:  by}

\tt \:  ⟼ \red{y \:  = mx \:  +  \: c}

☆ On substituting the values of m and c, we get

\tt \:  ⟼ \: y \:  = \dfrac{1}{ \sqrt{3} } x + 2

\tt \:  ⟼ \sqrt{3} y = x + 2 \sqrt{3}

\tt \:  ⟼ \: x \:  -  \:  \sqrt{3} y + 2 \sqrt{3}  = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions