interval cos^3 x sin x dx
Answers
EXPLANATION.
∫Cos³x.Sinx dx.
As we know that,
By applying substitution method, we get.
Let, we assume that,
⇒ Cos(x) = t.
Differentiate w.r.t x, we get.
⇒ -Sin(x)dx = dt.
⇒ ∫Cos³x.Sinx.dx.
⇒ ∫t³(-dt).
⇒ -∫t³dt.
As we know that,
Formula of ⇒ ∫xⁿdx = xⁿ⁺¹/n + 1.
By applying this formula, we get.
⇒ -[t³⁺¹/3 + 1] + c.
⇒ -[t⁴/4] + c.
⇒ -t⁴/4 + c.
Substitute the value of t in equation, we get.
⇒ -Cos⁴(x)/4 + c.
MORE INFORMATION.
Some standard substitution.
(1) = √a² - x² Or 1/√a² - x²
Substitute x = a sin∅.
(2) = √x² + a² Or 1/√x² + a²
Substitute x = a tan∅ Or x = a Sin(h)∅.
(3) = √x² - a² Or 1/√x² - a²
Substitute x = a sec∅ Or a = Cos(h)∅.
(4) = √x/a + x Or √a + x/x Or √x(x + a) Or 1/√x(a + x).
Substitute x = a tan²∅.
(5) = √x/a - x Or √a - x/x Or 1/√x(a - x).
Substitute x = a sin²∅.
(6) = √x/x - a Or √x - a/x Or √x(x - a) Or 1/√x(x - a).
Substitute x = a sec²∅.
(7) = √a - x/a + x Or √a + x/a - x.
Substitute x = a Cos2∅.
(8) = √x - α/β - x Or √(x - α)(β - x), (β > 0).
Substitute x = αcos²∅ + βsin²∅.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━