Math, asked by dismaanandan, 4 months ago

interval cos^3 x sin x dx​

Answers

Answered by amansharma264
7

EXPLANATION.

∫Cos³x.Sinx dx.

As we know that,

By applying substitution method, we get.

Let, we assume that,

⇒ Cos(x) = t.

Differentiate w.r.t x, we get.

⇒ -Sin(x)dx = dt.

⇒ ∫Cos³x.Sinx.dx.

⇒ ∫t³(-dt).

⇒ -∫t³dt.

As we know that,

Formula of ⇒ ∫xⁿdx = xⁿ⁺¹/n + 1.

By applying this formula, we get.

⇒ -[t³⁺¹/3 + 1] + c.

⇒ -[t⁴/4] + c.

⇒ -t⁴/4 + c.

Substitute the value of t in equation, we get.

⇒ -Cos⁴(x)/4 + c.

                                                                                                                                     

MORE INFORMATION.

Some standard substitution.

(1) = √a² - x²  Or  1/√a² - x²

Substitute x = a sin∅.

(2) = √x² + a²  Or  1/√x² + a²

Substitute x = a tan∅  Or  x = a Sin(h)∅.

(3) = √x² - a²  Or  1/√x² - a²

Substitute x = a sec∅  Or  a = Cos(h)∅.

(4) = √x/a + x  Or  √a + x/x  Or  √x(x + a)  Or  1/√x(a + x).

Substitute x = a tan²∅.

(5) = √x/a - x  Or  √a - x/x  Or  1/√x(a - x).

Substitute x = a sin²∅.

(6) = √x/x - a  Or  √x - a/x  Or  √x(x - a)  Or  1/√x(x - a).

Substitute x = a sec²∅.

(7) = √a - x/a + x  Or  √a + x/a - x.

Substitute x = a Cos2∅.

(8) = √x - α/β - x  Or  √(x - α)(β - x),  (β > 0).

Substitute x = αcos²∅ + βsin²∅.

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: :  ⟼  \: Let \: I \:  =  \:  \int \: ( {cos}^{3} x \: sinx )\: dx

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Now, \: put \: cosx \:  = y

\tt \ \: :  ⟼ differentiate \: w.r.t. \: x \: we \: get

\tt \ \: :  ⟼  -  \: sinx \:  = \dfrac{dy}{dx}

\tt \ \: :  ⟼  \: sinx \: dx \:  =  -  \: dy \:

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ So \: I =  \int {y}^{3} ( - dy)

\tt\implies \:I =  - \dfrac{ {y}^{4} }{4}  + c \:  \:  \: ( \because \:  \int {x}^{n} dx = \dfrac{ {x}^{ n+ 1} }{ n+ 1}  + c)

\tt\implies \:I =  - \dfrac{1}{4}  {cos}^{4} x + c

─━─━─━─━─━─━─━─━─━─━─━─━

Similar questions