Math, asked by Rohitkumar7990, 1 year ago

Interval of strictly increasing and decresing of function sinx + cosx

Answers

Answered by tiger009
0

 {\text{Here, we have }}f\left( x \right) = \sin x + \cos x \hfill \\<br />   \Rightarrow f'\left( x \right) = \cos x - \sin x \hfill \\<br />{\text{Function }}f\left( x \right){\text{should be strictly increasing}} \hfill \\<br />\Leftrightarrow f'\left( x \right) &gt; 0 \hfill \\<br /> \Leftrightarrow \left( {\cos x - \sin x} \right) &gt; 0 \hfill \\<br />\Leftrightarrow \sin x - \cos x &lt; 0 \hfill \\<br />   \Leftrightarrow \sin x &lt; \cos x \hfill \\<br />   \Leftrightarrow \tan x &lt; 1 \hfill</p><p>   \Leftrightarrow x \in \left( { - \frac{{3\pi }}{2}, - \frac{{3\pi }}{4}} \right) \cup \left( { - \frac{\pi }{2},\frac{\pi }{4}} \right) \cup \left( {\frac{\pi }{2},\frac{{5\pi }}{4}} \right) \cup \left( {\frac{{3\pi }}{2},2\pi } \right) \hfill \\</p><p>{\text{Function }}f\left( x \right){\text{should be strictly decreasing}} \hfill \\</p><p>\Leftrightarrow f'\left( x \right) &lt; 0 \hfill \\</p><p>\Leftrightarrow \left( {\cos x - \sin x} \right) &lt; 0 \hfill \\</p><p>\Leftrightarrow \sin x - \cos x &gt; 0 \hfill \\</p><p>   \Leftrightarrow \sin x &gt; \cos x \hfill \\</p><p>   \Leftrightarrow \tan x &gt; 1 \hfill \\</p><p>   \Leftrightarrow x \in \left( { - \frac{{7\pi }}{4}, - \frac{{3\pi }}{2}} \right) \cup \left( { - \frac{{3\pi }}{4}, - \frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{4},\frac{\pi }{2}} \right) \cup \left( {\frac{{5\pi }}{4},\frac{{3\pi }}{2}} \right) \hfill \\

Similar questions