Math, asked by maheshsati71, 8 months ago


intgreation from π/2- -π/2tan x dx

Answers

Answered by shadowsabers03
3

For an odd function f(x),

\displaystyle\longrightarrow f(-x)=-f(x)\quad\quad\dots(1)

We know the definite integral property,

\longrightarrow\displaystyle\int\limits_b^af(x)\ dx=\int\limits_b^af(a+b-x)\ dx

If a+b=0,

\longrightarrow\displaystyle\int\limits_{-a}^af(x)\ dx=\int\limits_{-a}^af(-x)\ dx

From (1),

\longrightarrow\displaystyle\int\limits_{-a}^af(x)\ dx=\int\limits_{-a}^a-f(x)\ dx

\longrightarrow\displaystyle\int\limits_{-a}^af(x)\ dx=-\int\limits_{-a}^af(x)\ dx

\longrightarrow\displaystyle\int\limits_{-a}^af(x)\ dx+\int\limits_{-a}^af(x)\ dx=0

\longrightarrow\displaystyle\int\limits_{-a}^a[f(x)\ dx+f(x)]\ dx=0

\longrightarrow\displaystyle\int\limits_{-a}^a2f(x)\ dx=0

\longrightarrow\displaystyle2\int\limits_{-a}^af(x)\ dx=0

\longrightarrow\displaystyle\underline{\underline{\int\limits_{-a}^af(x)\ dx=0}}

Since f(x)=\tan x is an odd function,

\longrightarrow\displaystyle\underline{\underline{\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\tan x\ dx=0}}

Similar questions