Math, asked by Anonymous, 1 year ago

intigrate with respect to x
1/cos^2x(sin^2x + cos^2x) dx

Answers

Answered by Anonymous
2

we know that

Sin^2(x ) + cos^2(x) = 1

and

1/cos^2x = sec^2x

Given

 \int \frac{ 1 }{ { \cos(x) }^{2} ( { \sin(x) }^{2}  +  { \cos(x) }^{2} )} dx

Now on using formula

 \int { \sec(x) }^{2} dx \\  \tan(x)  + c

Answered by roysupriyo10
1

Answer:

tan(x)+C

Step-by-step explanation:

\int  \frac{dx}{ { \cos(x) }^{2}( { \sin(x) }^{2} +   { \cos(x) }^{2}  )  }  \\ \int  \frac{dx}{ { \cos(x) }^{2} (1)}  \\ \int  \frac{dx}{ \frac{1}{ { \sec(x) }^{2} } } \\  \int  { \sec(x) }^{2} dx \\  \tan(x)  + c

Similar questions