intigration formulas
Answers
Answered by
1
Answer:
- ∫ 1 dx = x + C.
- 1 dx = x + C.∫ a dx = ax+ C.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.∫ sin x dx = – cos x + C.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.∫ sin x dx = – cos x + C.∫ cos x dx = sin x + C.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.∫ sin x dx = – cos x + C.∫ cos x dx = sin x + C.∫ sec2 dx = tan x + C.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.∫ sin x dx = – cos x + C.∫ cos x dx = sin x + C.∫ sec2 dx = tan x + C.∫ csc2 dx = -cot x + C.
- 1 dx = x + C.∫ a dx = ax+ C.∫ xn dx = ((xn+1)/(n+1))+C ; n≠1.∫ sin x dx = – cos x + C.∫ cos x dx = sin x + C.∫ sec2 dx = tan x + C.∫ csc2 dx = -cot x + C.∫ sec x (tan x) dx = sec x + C.
Similar questions
English,
3 months ago
Biology,
3 months ago
Social Sciences,
7 months ago
Accountancy,
7 months ago
English,
11 months ago