Math, asked by divya0906singh, 5 months ago

intigration of 2sinxcosx​

Answers

Answered by Anonymous
8

Explanation,

 \green \bigstar \tt \:  \int 2 \sin(x) . \cos(x)  \\  \\  \\   :  \implies   \tt \:  \int 2 \sin(x).dx \\  \\  \\  :  \implies  {\underline {\boxed{\tt  -  \dfrac{1}{2} cos(2x) + c}}} \:  \red \bigstar

Hence,

\dag{ \boxed{ \tt{\int 2 \sin( x).  \cos(x)  =   -  \dfrac{1}{2}  \cos(2x) + c }}}

Know to more,

  • Power rule.

\bull\tt \int x {}^{n} .dx \:  \rightarrow \:  \dfrac{x {}^{n + 1} }{n + 1}  + c

  • Multiplication by constant (c).

 \bull\tt \int c \: f(x).dx \:  \rightarrow \: c \int f(x).dx

  • Sum rule.

 \bull\tt \int (f + g)dx  \rightarrow \: \int fdx \:  +  \:  \int gdx

  • Difference rule.

\bull \tt \int (f - g)dx  \rightarrow \: \int fdx \:  - \:  \int gdx

Similar questions