Math, asked by Maniry52481, 3 months ago

Intigration of sinx/(1+2sinx)

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{ \sin(x) }{1 + 2 \sin( x) } dx \\

 =   \frac{1}{2} \int \frac{2 \sin(x) + 1 - 1 }{1 + 2 \sin( x) } dx \\

 =   \frac{1}{2} \int \frac{2 \sin(x) + 1 }{1 + 2 \sin( x) } dx   -  \frac{1}{2}  \int \frac{dx}{1 + 2 \sin(x) } \\

 =   \frac{1}{2} \int  dx   -  \frac{1}{2}  \int \frac{dx}{1 +  \frac{4 \tan( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) }  } \\

 =   \frac{x}{2}   -  \frac{1}{2}  \int \frac{(1 +  \tan ^{2} ( \frac{x}{2} )) dx}{ \tan^{2} ( \frac{x}{2} )  + 4 \tan( \frac{x}{2} )   + 1 } \\

 =   \frac{x}{2}   -  \frac{1}{2}  \int \frac{ \sec^{2} ( \frac{x}{2} ) dx}{ \tan^{2} ( \frac{x}{2} )  + 4 \tan( \frac{x}{2} )   + 4 - 3 } \\

 =   \frac{x}{2}   -  \frac{1}{2}  \int \frac{ \sec^{2} ( \frac{x}{2} ) dx}{( \tan ( \frac{x}{2} )   + 2) ^{2} - 3 } \\

 Let \tan(\frac{x}{2}) + 2= t\\ \implies \frac{1}{2}\sec^{2}(\frac{x}{2}) dx= dt\\

 =   \frac{x}{2}   -    \int \frac{dt}{( t) ^{2} -  { (\sqrt{3} )}^{2}  } \\

 =  \frac{x}{2}  -  \frac{1}{2 \sqrt{3} }  ln | \frac{t +  \sqrt{3} }{t -  \sqrt{3} } |   + c \\

 =  \frac{x}{2}  -  \frac{1}{2 \sqrt{3} }  ln | \frac{ \tan( \frac{x}{2} )  +  \sqrt{3} }{ \tan( \frac{x}{2} ) -  \sqrt{3} } |  + c \\

Similar questions