Into how many smaller cubes
should a cube be divided, so that
the total surface area of the
smaller cubes becomes twice of
the total surface area of the
original cube?
Answers
Answered by
1
Answer:
If broken down into parts, this is an easy problem. It is first necessary to isolate the dimensions of the walls. If the room is 9 ft high, we know 18 x 15 designates the area of the floor and ceiling. Based on this, we know that the room has the following dimensions for the walls: 18 x 9 and 15 x 9. Since there are two of each, we can calculate the total area of walls - ignoring doors and windows - by doubling the sum of these two areas:
2 * (18 * 9 + 15 * 9) = 2 * (162 + 135) = 2 * 297 = 594 ft2
Now, we merely need to calculate the area "taken out" of the walls:
For the door: 3 * 7 = 21 ft2
For the windows: 2 * (2 * 5) = 20 ft2
The total wall space is therefore: 594 – 21 – 20 = 553 ft2
Similar questions