intragate 1 upon (1+sin x) dx
Answers
Given integral is
On rationalizing the denominator, we get
Hence,
Additional information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given integral is
\begin{gathered}\rm \: \displaystyle\int\rm \frac{1}{1 + sinx} \: dx \\ \end{gathered}
∫
1+sinx
1
dx
On rationalizing the denominator, we get
\begin{gathered}\rm \: = \displaystyle\int\rm \frac{1}{1 + sinx} \times \frac{1 - sinx}{1 - sinx} \: dx \\ \end{gathered}
=∫
1+sinx
1
×
1−sinx
1−sinx
dx
\begin{gathered}\rm \: = \displaystyle\int\rm \frac{1 - sinx}{1 - {sin}^{2} x} \: dx \\ \end{gathered}
=∫
1−sin
2
x
1−sinx
dx
\begin{gathered}\rm \: = \displaystyle\int\rm \frac{1 - sinx}{{cos}^{2} x} \: dx \\ \end{gathered}
=∫
cos
2
x
1−sinx
dx
\begin{gathered}\rm \: = \displaystyle\int\rm \bigg( \frac{1}{ {cos}^{2} x} - \frac{ sinx}{{cos}^{2} x}\bigg) \: dx \\ \end{gathered}
=∫(
cos
2
x
1
−
cos
2
x
sinx
)dx
\begin{gathered}\rm \: = \displaystyle\int\rm ( {sec}^{2}x - secx \: tanx) \: dx \\ \end{gathered}
=∫(sec
2
x−secxtanx)dx
\begin{gathered}\rm \: = \: tanx \: - \: secx \: + \: c \\ \end{gathered}
=tanx−secx+c
Hence,
\begin{gathered}\red{\rm\implies \:\boxed{ \rm{ \:\rm \:\displaystyle\int\rm \frac{1}{1 + sinx}dx = \: tanx \: - \: secx \: + \: c \: }}} \\ \end{gathered}
⟹
∫
1+sinx
1
dx=tanx−secx+c
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
f(x)
k
sinx
cosx
sec
2
x
cosec
2
x
secxtanx
cosecxcotx
tanx
x
1
e
x
∫f(x)dx
kx+c
−cosx+c
sinx+c
tanx+c
−cotx+c
secx+c
−cosecx+c
logsecx+c
logx+c
e
x
+c