Math, asked by kothapalliaswani, 2 months ago

intreal 0 to 2π cos^2 theta * sin theta dtheta​

Answers

Answered by allysia
1

Answer:

0

Step-by-step explanation:

\\\tt \int\limits^{2\pi}_0 {cos^2 \theta \  sin\theta} \, d\theta \\

Let y= cosθ

⇒ dy = - sinθ dθ

Now the values of limits will become 1 to 1

Since when x= 0, y = 1 and when x= 2π, y =1

\\\tt \int\limits^{1}_1 {y^2  \  sin\theta} \, \dfrac{dy}{-sin \theta}  \\\\\implies  \int\limits^{1}_1 {-y^2 } \, dy \\ \implies [\dfrac{-y^3}{3} ] _{1} ^{1} \\=\dfrac{-1}{3} - (\dfrac{-1}{3} ) \\=0

Similar questions