Math, asked by umeshspn9740, 10 months ago

Intregal sinx sec square x dx

Answers

Answered by ananthukrishnan456
19

Answer:

secx + c

Step-by-step explanation:

integral sinxsec^x dx

= integral sinx × 1/cos^2x

= integral( sinx/cosx × 1/cosx)

= integral (tanx secx)

= secx + c

(we know that

integral secx tanx = secx + c)

Answered by pulakmath007
3

  \displaystyle \sf{ \int \:  \sin x \:  { \sec}^{2}  x \: dx  } =  \sec x + c

Given :

  \displaystyle \sf{ \int \:  \sin x \:  { \sec}^{2}  x \: dx  }

To find :

The value of integral

Solution :

Step 1 of 2 :

Write down the given Integral

The given Integral is

  \displaystyle \sf{ \int \:  \sin x \:  { \sec}^{2}  x \: dx  }

Step 2 of 2 :

Find the value of the integral

  \displaystyle \sf{ \int \:  \sin x \:  { \sec}^{2}  x \: dx  }

  \displaystyle \sf{  = \int \:  \sin x \: \:    \frac{1}{ { \cos}^{2} x}  \: dx  }

  \displaystyle \sf{  = \int \:     \frac{ \sin x}{ { \cos}^{} x}. \frac{1}{ \cos x}   \: dx  }

  \displaystyle \sf{  = \int \:      \tan x \:  \sec x  \: dx  }

  \displaystyle \sf{  = \int \: \sec x  \:  \tan x \:  dx  }

  \displaystyle \sf{  =\sec x   + c }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions