Math, asked by ramanujpatidar20, 10 months ago

intregation 1/1+cos x dx​

Answers

Answered by Anonymous
1

Given ,

The function is

  •  \tt f(x) =  \frac{1}{1 + cos(x)}

Integrating wrt to x , we get

 \tt \implies \int{ \frac{1}{1 + cos(x)} } \:  \: dx

Multiplying denominator and numerator by 1 - cos(x) , we get

 \tt \implies \int{ \frac{\{ 1 - cos(x)\}}{ \{1 + cos(x) \} \{ 1 - cos(x)\}} } \:  \: dx

 \tt \implies \int{ \frac{\{ 1 - cos(x)\}}{  {(1)}^{2}  -  {cos}^{2}(x) } } \:  \: dx

 \tt \implies \int{ \frac{\{ 1 - cos(x)\}}{   {sin}^{2}(x) } } \:  \: dx

 \tt \implies \int{ \frac{1}{ {sin}^{2}(x)   }  -  \frac{cos(x)}{ {sin}^{2}(x) }  } \:  \: dx

 \tt \implies \int{  {cosec}^{2} (x) - cot(x)cosec(x)} \:  \: dx

 \tt \implies  - cot(x) -  \{ - cosec(x) \}

 \tt \implies  - cot(x)  +  cosec(x)

Therefore , the anti - derivative is -cot(x) + cosec(x)

________________ Keep Smiling

Similar questions