Math, asked by pinkeydeb54, 3 months ago

intregration of log tan inverse x divided by x square + 1​

Answers

Answered by assingh
22

Topic :-

Indefinite Integration

To Integrate :-

\displaystyle \int \dfrac{\log(\arctan x)}{1+x^2}dx

Solution :-

\displaystyle \int \dfrac{\log(\arctan x)}{1+x^2}dx

Substitute\:\arctan x = t.

Upon\:differentiation,

\dfrac{1}{1+x^2}\:dx =dt

\displaystyle \int \log(\arctan x)\cdot\left(\dfrac{1}{1+x^2}\cdot dx\right)

\displaystyle \int \log(t)\:dt

It\:can\:be\:written\:as,

\displaystyle \int t^0\cdot\log(t)\:dt

(\because t^0=1)

\log t\displaystyle\int t^0\:dt-\int \left[\dfrac{d(\log t)}{dt}\cdot \int t^0\:dt\right]dt

\left ( \because \displaystyle \int u\cdot v\:dx=u\int v \:dx-\int\left[ \dfrac{du}{dx}\int v\:dx\right]dx \right)

\log t\cdot (t)-\displaystyle \int \left[\dfrac{d(\log t)}{dt}\cdot (t)\right]dt

\left(\because \displaystyle \int x^n\:dx=\dfrac{x^{n+1}}{n+1}+C\right)

t\cdot \log t-\displaystyle \int \left[\dfrac{1}{t}\cdot t\right]dt

\left(\because \dfrac{d(\log x)}{dx}=\dfrac{1}{x}\right)

t\cdot \log t-\displaystyle \int 1\:dt

t\cdot \log t-\displaystyle \int t^0\:dt

(\because t^0=1)

t\cdot \log t-t+C

\left(\because \displaystyle \int x^n\:dx=\dfrac{x^{n+1}}{n+1}+C\right)

Put\:back\:t=\arctan x,

(\arctan x)\cdot \log (\arctan x)-(\arctan x)+C

or

(\arctan x)(\log (\arctan x)-1)+C

Answer :-

\underline{\boxed{(\arctan x)(\log (\arctan x)-1)+C}}

\bold{Note :}\:\arctan x=\tan^{-1}x


amansharma264: Good
Similar questions