Math, asked by Dixant6242, 5 months ago

Intrigation (1-x) dx by (1+x) root over x+x²+x³

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \frac{(1 - x)dx}{(1 + x) \sqrt{x +  {x}^{2} +  {x}^{3}  } }  \\

let \:  \: x = t^{2}  \\  \implies \: dx = 2tdt

 =  \int \frac{(1 -  {t}^{2}).2tdt }{(1 +  {t}^{2} ) \sqrt{ {t}^{2}  +  {t}^{4}  +  {t}^{6} } }  \\

 = 2 \int \frac{(1 -  {t}^{2})tdt }{(1 +  {t}^{2}).t \sqrt{1 +  {t}^{2} +  {t}^{4}  }  }  \\

 = 2 \int \frac{(1 -  {t}^{2})dt }{t( \frac{1}{t}  +  t)t \sqrt{ 1 + \frac{1}{ {t}^{2} } +  {t}^{2}  }  } \\

 =  - 2 \int \frac{(1 -   \frac{1}{ {t}^{2} } )dt }{( \frac{1}{t}  +  t)\sqrt{ 1 + \frac{1}{ {t}^{2} } +  {t}^{2}  }  } \\

 =  - 2 \int \frac{(1 -   \frac{1}{ {t}^{2} } )dt }{( \frac{1}{t}  +  t)\sqrt{ (t +  \frac{1}{t} )^{2}  - 1 }  } \\

let \:  \: t +  \frac{1}{t}  = u \\  \implies(1 -  \frac{1}{ {t}^{2} } )dt = du

 =  - 2 \int \frac{du}{ u  \sqrt{ {u}^{2} - 1 }  } \\

 =  - 2 \sec^{ - 1} (u)  + c

 =  - 2\sec^{ - 1} (t +  \frac{1}{t} ) + c

 =  - 2\sec^{ - 1} ( \sqrt{x} +  \frac{1}{ \sqrt{x} }  ) + c

Similar questions