Introduction Till now, we have been performing simple operations on whole numbers. If we have to perform operations of addition, subtraction, multiplication and division on different whole numbers, simultaneously we shall have to know the order of operations. While performing the same operation but will different order, we get different results. To avoid this, we shall learn some rules, regarding order of different operations. In this content, we shall learn rules regarding use of brackets and calculation involves a combination of the fundamental operation +, -, *, -. There should be performed in the following order : Division/Multiplication/Addition/Subtraction .
55÷5+18+12×2-1
Answers
Answer:
Step-by-step explanation:
Key Points
The basic arithmetic operations for real numbers are addition, subtraction, multiplication, and division.
The basic arithmetic properties are the commutative, associative, and distributive properties.
Key Terms
associative: Referring to a mathematical operation that yields the same result regardless of the grouping of the elements.
commutative: Referring to a binary operation in which changing the order of the operands does not change the result (e.g., addition and multiplication).
product: The result of multiplying two quantities.
quotient: The result of dividing one quantity by another.
sum: The result of adding two quantities.
difference: The result of subtracting one quantity from another.
The Four Arithmetic Operations
Addition
Addition is the most basic operation of arithmetic. In its simplest form, addition combines two quantities into a single quantity, or sum. For example, say you have a group of 2 boxes and another group of 3 boxes. If you combine both groups together, you now have one group of 5 boxes. To represent this idea in mathematical terms:
2
+
3
=
5
Subtraction
Subtraction is the opposite of addition. Instead of adding quantities together, we are removing one quantity from another to find the difference between the two. Continuing the previous example, say you start with a group of 5 boxes. If you then remove 3 boxes from that group, you are left with 2 boxes. In mathematical terms:
5
−
3
=
2
Multiplication
Multiplication also combines multiple quantities into a single quantity, called the product. In fact, multiplication can be thought of as a consolidation of many additions. Specifically, the product of
x
and
y
is the result of
x
added together
y
times. For example, one way of counting four groups of two boxes is to add the groups together:
2
+
2
+
2
+
2
=
8
However, another way to count the boxes is to multiply the quantities:
2
⋅
4
=
8
Note that both methods give you the same result—8—but in many cases, particularly when you have large quantities or many groups, multiplying can be much faster.