Math, asked by rihanarangrej163, 7 months ago

INTRODUCTION TO TRIGONOMETRY
EXERCISE 8.1
1. In A ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, COS A
(ii) sin C, cos C
2. In Fig. 8.13, find tan P-cot R.
12 cnt
3
3. If sin A =
calculate cos A and tan A.
4
4. Given 15 cot A= 8, find sin A and sec A.​

Answers

Answered by Sushant10genius
4

answer is in the attachment......

...........

Attachments:
Answered by EnchantedBoy
43

Step-by-step explanation:

\boxed{1}

In ΔABC , right angled at B , AB = 24cm , BC = 7 cm.

We know that,

AC²=AB²+BC²

=24²+7²

=576+49

=625

AC=\sqrt{625}

=2cm

(i)sin A =\frac{opposite ∠A}{Hypotense}

=\frac{AB}{AC}

=\frac{7}{25}

cos A=\frac{adjacent ∠A}{Hypotenuse}

=\frac{AB}{AC}

=\frac{24}{25}

(ii)sin C=\frac{opposite ∠C}{Hypotenuse}

=\frac{AB}{AC}

=\frac{24}{25}

cos C=\frac{adjacent ∠C}{Hypotenuse}

=\frac{AB}{AC}

=\frac{7}{25}

\boxed{2}

We know that,

By Pythagoras theorem,

PR²=QR²+PQ²

QR²=PR²+PQ²

QR=\sqrt{PR²-PQ²}

=\sqrt{13²-12²}

=\sqrt{169-144}

=\sqrt{25}=5cm

tan P=\frac{opposite ∠P}{adjacent ∠P}

=\frac{QR}{PQ}

=\frac{5}{12}

cot R=\frac{adjacent∠R}{opposite∠R}

=\frac{QR}{PQ}

=\frac{5}{12}

tan P-cot R =\frac{5}{12}-\frac{5}{12}=0

\boxed{3}

sin A=\frac{3}{4}

We know that,

sin C=\frac{perpendicular}{Hypotenuse}

Hypotenuse²=Perpendicular²+Base²

H²=P²+B²

sin A=\frac{3}{4}=\frac{P}{H}

P=3,H=4

B=\sqrt{H²-P²}

=\sqrt{4²-3²}

=\sqrt{16-9}

Base=\sqrt{7}

cos A=\frac{Base}{Hypotenuse}={\frac{7}}{4}

=\sqrt{7}/{4}

tan A=\frac{Perpendicular}{Base}=\frac{3}/\sqrt{7}

\boxed{4}

15 cot A=8

cot A=\frac{8}{15}

cot A =\frac{Base}{Perpendicular}

Base=8,Perpendicular=15

Hypotenuse=\sqrt{perpendicular²+Base²}

=\sqrt{15²+8²}

=\sqrt{225+64}

=\sqrt{289}

=17

sin A=\frac{Perpendicular}{Hypotenuse}=\frac{15}{17}

sec A=\frac{Hypotenuse}{Base}=\frac{17}{8}

Hope it helps :-)

MARK ME BRAINLIST.......

Similar questions