Math, asked by JSP2008, 1 month ago

introvertleo is going to answer for me.
If other users know exactly the correct answer, you can.

• Explanation if needed
• Steps required clearly​

Attachments:

Answers

Answered by Saby123
42

Solution :

1. Factorise : 125x³ - 64y³

>> (5x)³ - (4y)³

>> ( 5x - 4y)( 25x² + 20xy + 16y²)

2. Find the value of :

(x+y)² + (x-y)²

>> x² + 2xy + y² + x² - 2xy + y²

>> 2(x² + y²)

3. Find the value of m if x+4 is a factor of x² + 3x + m .

If x+4 is a factor then f(-4) = 0

>> (-4)² + 3(-4) + m = 0

>> 16 - 12 + m = 0

>> m = -4

4. Expand (y-√3)²

>> y² - 2√3y + 3

5. If x+1/x = 7 find x³ + 1/x³

(x+1/x)³ = 7³ = 343

>> x³ + 1/x³ + 3(x+1/x) = 343

>> x³ + 1/x³ + 21 = 343

>> x³ + 1/x³ = 322

6. Expand (x-2y-3z)²

>> x² + 4y² + 9z² - 4xy - 12yz - 6xz

7. If 3x+2y = 12 and xy = 6, find the value of 27x³ + 8y³

>> (3x+2y)³ = 12³ = 1728

>> 27x³ + 8y³ + 18xy(3x+2y) = 1728

>> 27x³ + 8y³ + 18×6×12 = 1728

>> 27x³ + 8y³ = 1728 - 1296 = 432

8. Factorise 4x² + 9y² + 16z² + 12xy - 24yz - 16xz

>> (2x + 3y - 4z)²

9. Show that (x-1) is a factor of x¹⁰ - 1 and x¹¹ - 1

>> Show that for f(1), both equal to 0 & hence is a factor

x¹⁰ - 1 = (x-1)(x+1)(x⁴+x³+x²+1)(x⁴-x³+x²-x+1)

x¹¹ - 1 = (x-1)(x¹⁰+x⁹+x⁸+x⁷+x⁶+x⁵+x⁴+x³+x²+1)

10. Find the value of a if (x-a) is a factor of x³ - a²x + x + 2.

>> Let f(x) = x³ - a²x + x + 2

For f(a) = 0 ( as it's a factor)

>> a³ - a³ + a + 2 = 0

>> a = -2

11. For what values of a is 2x³ + ax² + 11x + a + 3 divisible by 2x-1 ?

For this expression to be divisible by 2x-1, f(½) = 0

>> 2(½)³ + a(½)² + 11(½) + a + 3 = 0

>> ¼ + ¼a + 11/2 + a + 3 = 0

>> a(1+¼) + 35/4 = 0

>> (5/4)a = (-35/4)

>> a = -7

12. Factorise 1-2ab-(a²+b²)

>> 1-2ab-a²-b²

>> 1-(a²+2ab+b²)

>> 1-(a+b)²

>> (1+a+b)(1-a-b)

13. If one zero of the polynomial x² - √3x + 40 is 5, find the other zero?

Let us assume that the other zero is k.

( k + 5) =√3

>> k = √3-5

14. Simplify (x³-4-x+4x²)/(x²+3x-4)

>> [ x²(x+4) - 1(x+4) ]/[ x² + 4x - x - 4]

>> [x²-1][x+4]/[x+4][x-1]

>> x+1

15. Factorise 27x³ - 63x² + 49x - 343/27

>> 1/27(729x³ - 1701x² + 1323x - 343)

>> 1/27( 9x-7)³

>> [ ⅓(9x-7)]³

>> [ 3x - 7/3 ]³

16. Using a suitable identity evaluate (98)³

>> (98)³ = (100-2)³ = (100)³ - 3(100)(2)(100-2) - 2³ = 941192

17. Without actual division, prove that (x²-x-2) divides (2x⁴+x³-5x²-8x-4)

Let us factorise x²-x-2 first

x²-x-2 = x²-2x+x-2 = x(x-2) + 1(x-2) = (x+1)(x-2) .

To prove this, we need to show f(-1)=f(2)=0

f(2) = 2(2)⁴+(2)³-5(2)²-8(2)-4 = 0

f(-1)=2(-1)⁴+(-1)³-5(-1)²-8(-1)-4 = 0

18. If (x+2) and (x-1) are the factors of x³ + 10x² + mx + n, find the values of m and n.

f(-2) = f(1) = 0.

>> -8 + 40 -2m + n = 1+10+m+n = 0

>> 2m - 32 = n & n = -m-11

>> 2m - 32 = -m - 11

>> 3m = 21

>> m = 7 and n = -18

19. If both (x-2) and (x-½) are factors of px²+5x+r then ?

(a) p = r

(b) p + r = 0

(c) 2p + r = 0

(d) 2r + p = 0

f(2) = f(½) = 0

>> 4p + 10 + r = ¼p + 5/2 + r = 0

4p + 10 = -r & ¼p + 5/2 = -r

>> p(4-¼) = 5/2-10

>> 15/4p = -15/2

>> ¼p = -½

>> p = -2 and r = -2

p = r(a)

20. x+1 is a factor of xⁿ +1 if

(a) n is an odd integer

(b) n is an even integer

(c) n is a negative integer

(d) n is a positive integer

It is a factor only if n is odd, n € I [ Application of factor theorem ] (a)

_______________________________________

Answers :

1. ( 5x - 4y)( 25x² + 20xy + 16y²)

2. 2(x² + y²)

3. m = -4

4. y² - 2√3y + 3

5. x³ + 1/x³ = 322

6. x² + 4y² + 9z² - 4xy - 12yz - 6xz

7. 432

8. (2x + 3y - 4z)²

10. a = -2

11. a = -7

12. (1+a+b)(1-a-b)

13. √3-5

14. x+1

15. [ 3x - 7/3 ]³

16. 941192

18. m = 7 and n = -18

19. (a)

20. (a)

__________________________________________

Additional Information :

For integers a, b, c € N, the following identities hold true -

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

__________________________________________


Saby123: Feel free to drop a messáge in my ínbox for further queries regarding this answer :)
Similar questions