Math, asked by anuradasrinivasan, 3 months ago

invent the value of n if nc5=42nc3 where n less than 4​

Answers

Answered by pulakmath007
3

SOLUTION

CORRECT QUESTION

Invent the value of n if

 \sf{ {}^{n} P_5 = 42 \:  {}^{n}P_3 \:  \:  \:  \:  \: where \: n > 4 }

EVALUATION

Here it is given that

 \sf{ {}^{n} P_5 = 42 \:  {}^{n}P_3 \:  }

 \displaystyle \sf{  \implies \: \frac{n!}{(n - 5)!} = 42 \times  \frac{n!}{(n - 3)!}}

 \displaystyle \sf{  \implies \: \frac{(n - 3)!}{(n - 5)!} = 42}

 \displaystyle \sf{  \implies \: \frac{(n - 3) \times (n - 4) \times (n - 5)!}{(n - 5)!} = 42}

 \displaystyle \sf{  \implies \:(n - 3) \times (n - 4) = 42}

 \displaystyle \sf{  \implies \: {n }^{2}  - 7n + 12= 42}

 \displaystyle \sf{  \implies \: {n }^{2}  - 7n - 30 = 0}

 \displaystyle \sf{  \implies \: {n }^{2}  - (10 - 3)n - 30 = 0}

 \displaystyle \sf{  \implies \: {n }^{2}  - 10 n  + 3n- 30 = 0}

 \displaystyle \sf{  \implies \: n(n - 10)  + 3(n- 10 )= 0}

 \displaystyle \sf{  \implies \: (n - 10)  (n + 3)= 0}

 \displaystyle \sf{  \implies \: either \:  \: (n - 10)  = 0 \:  \: or \:  \:  (n + 3)= 0}

Now

 \displaystyle \sf{  \: (n - 10)  = 0 \: \:   \: gives \:  \:  \: n = 10}

 \displaystyle \sf{  \: (n  + 3)  = 0 \: \:   \: gives \:  \:  \: n =  - 3}

Since n can not be negative

 \sf{ \therefore \:  \: n \:  \ne \:  - 3}

 \sf{ \therefore \:  \: n \:   =  \:  10}

FINAL ANSWER

The required value of n is 10

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 7 . 5pr = 7pr – 1, then find r

https://brainly.in/question/26877723

2. If nP4 = 14 n-2P3; find the value of n.

https://brainly.in/question/19732517

Similar questions