inverse laplace of (s²+8s+27)/(s+1)(s²+4s+13)
Answers
Step-by-step explanation:
f(t) = L−1{F}(t). Table of inverse Laplace
transform. F(s) f(t) = L−1{F}(t). 1 ... Example 2.
Determine L−1 { 3. (2s+5)3 + 2s+16 s2+4s+13.
+. 3 s2+4s+8}. ... A( s + 2)(s + 5) + B(s − 1)(s + 5)
+ C(s − 1)(s + 2).
#khushu
Answer:
Inverse Laplace of (s²+8s+27)/(s+1)(s²+4s+13) is 2e^(-t) - e^(-2t)cos(3t) + e^(-2t)sin(3t)
Step-by-step explanation:
Let F(s) = (s²+8s+27)/(s+1)(s²+4s+13)
Step 1 : Reducing to partial fraction
F(s) =
F(s) =
F(s) =
# Inverse Laplace of
# Inverse Laplace of
# Inverse Laplace of
If Laplace transform of f(t) is F(s) then,
Laplace transform of = F(s+a)
Therefore,
If Inverse Laplace of F(s) is f(t), then inverse laplace of F(s+a) is
Step 2 : Taking inverse laplace transform on both sides
f(t) =
#SPJ3