inverse Laplace transform of s+1/s^2s+1
Answers
Answered by
0
Step-by-step explanation:
3nn33nnebebnnenjeenekek
Answered by
0
Let,
f(s)= 1/(s²+s+1)
f(s)=1/(s+1/2)²+(√3/2)²
Then,
L^-1[f(s)]=L^-1[1/(s+1/2)²+(√3/2)²]
L^-1[f(s)]= e^-t/2.L^-1[1/[s²+(√3/2)²]]
L^-1[f(s)]=e^-t/2.2/√3.sin(√3t/2)
L^-1[1/s²+s+1]= 2/√3.e^-t/2.sin(√3t/2)
Similar questions