Math, asked by reji70535, 5 months ago

inverse of the matrix​

Attachments:

Answers

Answered by SugarCrash
78

\sf\large\red{\underline{\underline{Question}}}:

\textsf{Find the inverse of matrix A} = \left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]

\sf\large\red{\underline{\underline{Solution}}}:

\red\bigstar\;\boxed{\sf A^{-1}=\dfrac{adj. A}{|A|}}

We know that,

adj. A is transpose of Co-factor matrix.

Co-factor :

\longmapsto \sf\pink{A_{11}} =\left|\begin{array}{cc}4&3\\3&4\end{array}\right| = 16-9=7

\longmapsto \sf\pink{A_{12}} =-\left|\begin{array}{cc}1&3\\1&4\end{array}\right| = -(4-3)= -1

\longmapsto \sf\pink{A_{13}} =\left|\begin{array}{cc}1&4\\1&3\end{array}\right| = 3-4=-1

Similarly,

  • A₂₁ = -3 ; A₂₂ = 1 ; A₂₃ = 0
  • A₃₁ = -3 ; A₃₂ = 0 ; A₃₃ = 1

Therefore,

\sf \dag \;\green{Co-factor \;matrix} =\left[\begin{array}{ccc}7&-1&-1\\-3&1&0\\-3&0&1\end{array}\right]

So, \sf \pink{adj.A} = \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

Now,

Determinant :

|A| = \dashrightarrow \left|\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right| = 1(16-9)-3(4-3)+3(3-4)

\dashrightarrow\left|\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right| = 7-3-3 = 1

Inverse of matrix A :

\red\bigstar\;\boxed{\sf A^{-1}=\dfrac{adj. A}{|A|}}

\longmapsto \sf A^{-1} = \dfrac{ \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]}{1}

\sf A^{-1} = \sf\left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

Therefore,

Inverse of matrix A \sf = \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

Similar questions