Inverse square law means F α
Answers
Answer:n science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space.
Radar energy expands during both the signal transmission and the reflected return, so the inverse square for both paths means that the radar will receive energy according to the inverse fourth power of the range.
To prevent dilution of energy while propagating a signal, certain methods can be used such as a waveguide, which acts like a canal does for water, or how a gun barrel restricts hot gas expansion to one dimension in order to prevent loss of energy transfer to a bullet.
Contents
1 Formula
2 Justification
3 Occurrences
3.1 Gravitation
3.2 Electrostatics
3.3 Light and other electromagnetic radiation
3.3.1 Example
3.4 Sound in a gas
4 Field theory interpretation
5 History
6 See also
7 References
8 External links
Formula
Mathematically notated (see ∝):
{\displaystyle {\text{intensity}}\ \propto \ {\frac {1}{{\text{distance}}^{2}}}\,}{\displaystyle {\text{intensity}}\ \propto \ {\frac {1}{{\text{distance}}^{2}}}\,}
It can also be mathematically expressed as:
{\displaystyle {\frac {{\text{intensity}}_{1}}{{\text{intensity}}_{2}}}={\frac {{\text{distance}}_{2}^{2}}{{\text{distance}}_{1}^{2}}}}{\displaystyle {\frac {{\text{intensity}}_{1}}{{\text{intensity}}_{2}}}={\frac {{\text{distance}}_{2}^{2}}{{\text{distance}}_{1}^{2}}}}
or as the formulation of a constant quantity:
{\displaystyle {\text{intensity}}_{1}\times {\text{distance}}_{1}^{2}={\text{intensity}}_{2}\times {\text{distance}}_{2}^{2}}{\displaystyle {\text{intensity}}_{1}\times {\text{distance}}_{1}^{2}={\text{intensity}}_{2}\times {\text{distance}}_{2}^{2}}
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is everywhere proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, magnetic, light, sound, and radiation phenomena.
Justification
The inverse-square law generally applies when some force, energy, or other conserved quantity is evenly radiated outward from a point source in three-dimensional space. Since the surface area of a sphere (which is 4πr2 ) is proportional to the square of the radius, as the emitted radiation gets farther from the source, it is spread out over an area that is increasing in proportion to the square of the distance from the source. Hence, the intensity of radiation passing through any unit area (directly facing the point source) is inversely proportional to the square of the distance from the point source.Gauss's law for gravity is similarly applicable, and can be used with any physical quantity that acts in accordance with the inverse-square relationship.
Explanation:
Answer:
In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space.
Radar energy expands during both the signal transmission and the reflected return, so the inverse square for both paths means that the radar will receive energy according to the inverse fourth power of the range.
To prevent dilution of energy while propagating a signal, certain methods can be used such as a waveguide, which acts like a canal does for water, or how a gun barrel restricts hot gas expansion to one dimension in order to prevent loss of energy transfer to a bullet.
Explanation: