Math, asked by edrdtfrr30, 1 year ago

inverse trignomentric function identites​

Answers

Answered by Sharad001
69

 \large \boxed{  \underline{\bf{inverse \: trigonometric \: identities}} }\\  \\  \\  (1) { \sin}^ {- 1} x +  { \cos}^{ - 1} x =  \frac{ \pi}{2}  \\  \\ (2) { \tan}^ {- 1} x +  { \cot}^{ - 1} x =  \frac{ \pi}{2}  \:  \\  \\ (3) { \sec}^ {- 1} x +  { \csc}^{ - 1} x =  \frac{ \pi}{2}  \:  \\  \\ (4) \:  { \sin}^{ - 1} ( - x) =  -   { \sin}^{ - 1}x \\  \\ (5) { \cos}^{ - 1}  ( - x) =  \pi -  { \cos}^{ - 1} x \\  \\ (6) \:  { \tan}^{ - 1} ( - x) =  -  { \tan}^{ - 1} x \\  \\  (7) \:  { \sec}^{ - 1} ( - x) =  \pi -  { \sec}^{ - 1} x \\  \\ (8) { \sin}^{ - 1} ( \frac{1}{x} ) =  { \csc}^{ - 1} x \\  \\ (9) { \cos}^{ - 1}  (\frac{1}{x} ) =  { \sec}^{ - 1} x \\  \\ (10) {tan}^{ - 1} x +  { \tan}^{ - 1} y =   { \tan}^{ - 1} \frac{x + y}{1 - xy}  \\  \\ (11) 2{ \tan}^{ - 1} x =  { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} }  \\  \\ (12)2 { \tan}^{ - 1} x =  { \cos}^{ - 1}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }

hope these will help u.

Similar questions