Math, asked by booiyah, 1 month ago

Inverse Trigonometry

\bf Verify \: \red{ LHS }=  \red{ RHS } \\

 \sin^{-1} (2x\sqrt{1-x^2}) = \cos^{-1} x

Answer should be in proper way!​

Answers

Answered by SugarCrash
7

Correct Question:

To prove L.H.S = R.H.S

 \longmapsto \sin^{-1} (2x\sqrt{1-x^2}) = 2\cos^{-1} x

Solution:

\bf Let \: x = \cos\theta

\dag\large\underbrace{\rm \red{L.H.S}}:

 \longmapsto \sin^{-1} (2x\sqrt{1-x^2})

Putting x = cos θ

\dashrightarrow  \sin^{-1} (2\cos\theta\sqrt{1\cos^2\theta})\\\\\dashrightarrow\sin^{-1} (2\cos\theta\sin\theta

\dashrightarrow \sin^{-1} (\sin2\theta) \\\\ \dashrightarrow 2\theta

\dag\large\underbrace{\rm \red{R.H.S}}:

\longmapsto2\cos^{-1} x

\dashrightarrow 2\cos^{-1} (\cos\theta) \\\dashrightarrow 2(\theta)\\\dashrightarrow 2\theta

L.H.S = R.H.S

\quad\large \underline{\mathfrak{\green{Hence\:Proved..{\displaystyle !\,}}}}

  • Note : There would be 2\cos^{-1} x on right hand side. If there is \cos^{-1} x then it cannot be equal .
Similar questions