Chemistry, asked by tanuj60, 1 year ago

Iodine molecule is dissociates into atoms after absorbing light of 4500 A°. If one quantum of radiation is absorbed by each molecule.calculate K.E of I-atoms(B.E of I2=240 kJ/mole)​

Answers

Answered by BrainlyConqueror0901
143

Answer:

\huge{\boxed{\sf{K.E\:OF\:I-ATOM=0.21\times {10}^{-19}}}}

Explanation:

\huge{\boxed{\sf{SOLUTION-}}}

B.E \: of \:  i_{2} = 240 \frac{KJ}{mole}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 240 \times  {10}^{3}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{240 \times  {10}^{3} }{na}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  =  \frac{240 \times  {10}^{3} }{6.022 \times  {10}^{23} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 39.85 \times     {10}^{ - 20}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 3.985 \times  {10}^{ - 19}  \\ again \\ energy \: of \: photon =  \frac{hc}{  \lambda }   =  \frac{12400 \: e.v }{4500} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  = 2.755 \times 1.6 \times  {10}^{ - 19}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4.408 \times  {10}^{ - 19} j \\ extra \: energy = (4.408 - 3.985) \times  {10}^{ - 19}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0.423 \times  {10}^{ - 19} j \\ extra \: energy \: converted \: into \: K.E \: of \: two \: iodine = 0.21 \times  {10}^{ - 19} J

Answered by Anonymous
31

Solution:

Given:

=> B.E of I2=240 kJ/mole

So,

\sf{\implies Energy\;provided\;to\;iodine\;molecule = \dfrac{hc}{\lambda}}

\sf{\implies \dfrac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{4500 \times 10^{-10}}}

\sf{\implies 4.417 \times 10^{-19}J}

\sf{Also,\;energy\;used\;for\;breaking\;up\;iodine\;molecule=\dfrac{240\times 10^{3}}{6.023 \times 10^{23}}}

\sf{\implies 3.984\times 10^{-19}J}

\sf{Energy\;used\;for\;providing\;Kinetic\;energy\;to\;two\;I\;atoms =[4.417-3.984]\times 10^{-19}J}

\sf{So,\;K.E\;per\;iodine\;atom = \bigg[\dfrac{4.417-3.984}{2}\bigg]\times 10^{-19}}

{\boxed{\boxed{\sf{\implies 2.16\times 10^{-20}J}}}}

Similar questions