Math, asked by Rajvardhan25, 1 year ago

Iota raise to the power iota

Answers

Answered by ukp
0
cos@ + i.sin@ = e^(i.@)
if we take @ = pi/2:
i = e^(i.pi*/2)
Raise both sides to exponent i:
i^i = e^ (i.pi/2 . i)
i^i = e^(-pi/2)


Rajvardhan25: I want from Euler identity
ukp: First thing all the answers here are wrong,

Exponents are associative from right i.e.

iii=i(ii)≠(ii)iiii=i(ii)≠(ii)i

Lets calculate iiii first,

x=iix=ii

xi=i−1=−i=e−iπ/2xi=i−1=−i=e−iπ/2

x=e−π/2x=e−π/2

iii=z=ix=iexp(−π/2)iii=z=ix=iexp⁡(−π/2)

=(exp(iπ/2))exp(−π/2)=(exp⁡(iπ/2))exp⁡(−π/2)

=exp(i(π2exp(−π2)))=exp⁡(i(π2exp⁡(−π2)))

Let y=π2exp(−π2)≈0.3265364749...y=π2exp⁡(−π2)≈0.3265364749...

z=eiy=cos(y)+isin(y)z=eiy=cos⁡(y)+isin⁡(y)

z≈0.947159+0.32076445iz≈0.947159+0.32076445i

i^(i^i) =

0.947158998 + 0.94715899807
Answered by STORMSUNIL
0
cos@ + i.sin@ = e^(i.@)
if we take @ = pi/2:
i = e^(i.pi*/2)
Raise both sides to exponent i:
i^i = e^ (i.pi/2 . i)
i^i = e^(-pi/2)

STORMSUNIL: Exponents are associative from right i.e.

iii=i(ii)≠(ii)iiii=i(ii)≠(ii)i

Lets calculate iiii first,

x=iix=ii

xi=i−1=−i=e−iπ/2xi=i−1=−i=e−iπ/2

x=e−π/2x=e−π/2

iii=z=ix=iexp(−π/2)iii=z=ix=iexp⁡(−π/2)

=(exp(iπ/2))exp(−π/2)=(exp⁡(iπ/2))exp⁡(−π/2)

=exp(i(π2exp(−π2)))=exp⁡(i(π2exp⁡(−π2)))

Let y=π2exp(−π2)≈0.3265364749...y=π2exp⁡(−π2)≈0.3265364749...

z=eiy=cos(y)+isin(y)z=eiy=cos⁡(y)+isin⁡(y)

z≈0.947159+0.32076445iz≈0.947159+0.32076445i

i^(i^i) =

0.947158998 + 0.94715899807
Similar questions